Nonsymmetric Preconditioner Updates in Newton-Krylov Methods for Nonlinear Systems

نویسندگان

  • Stefania Bellavia
  • Daniele Bertaccini
  • Benedetta Morini
چکیده

Newton-Krylov methods, combination of Newton-like methods and Krylov subspace methods for solving the Newton equations, often need adequate preconditioning in order to be successful. Approximations of the Jacobian matrices are required to form preconditioners and this step is very often the dominant cost of Newton-Krylov methods. Therefore, working with preconditioners destroys in principle the “Jacobian-free” (or matrix-free) setting where the single Jacobian-vector product can be provided without forming and storing the element of the true Jacobian. In this paper, we propose and analyze a preconditioning technique for sequences of nonsymmetric Jacobian matrices based on the update of an earlier preconditioner. The proposed strategy can be implemented in a matrix-free manner. Numerical experiments on popular test problems confirm the effectiveness of the approach in comparison with the standard ILU-preconditioned Newton-Krylov approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioner Updates for Sequences of Nonsymmetric Linear System

When the computation of efficient preconditioners for individual linear systems of a sequence is expensive, significant reduction of costs can be achieved by updating previous preconditioners. For large and sparse systems, this has been done, among others, by recycling subspaces when using a Krylov subspace method [3], by means of small rank updates when applying Quasi-Newton methods [2] or wit...

متن کامل

New updates of incomplete LU factorizations and applications to large nonlinear systems

In this paper, we address the problem of preconditioning sequences of large sparse nonsymmetric systems of linear equations and present two new strategies to construct approximate updates of factorized preconditioners. Both updates are based on the availability of an incomplete LU (ILU) factorization for one matrix of the sequence and differ in the approximation of the so-called ideal updates. ...

متن کامل

Low-rank Quasi-newton Updates for Robust Jacobian Lagging in Newton Methods

Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to “lag” the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which...

متن کامل

Newton-krylov-schwarz: an Implicit Solver for Cfd

Newton Krylov methods and Krylov Schwarz domain decomposition methods have begun to become established in computational uid dynamics CFD over the past decade The former employ a Krylov method inside of Newton s method in a Jacobian free manner through directional di erencing The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that ...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011